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244 G. DANGELMAYR AND E. KNOBLOCH

The versal deformation of a vector field of co-dimension two that is equivariant under
a representation of the symmetry group O(2) and has a nilpotent linearization at the
origin is studied. An appropriate scaling allows us to formulate the problem in terms
of a central-force problem with a small dissipative perturbation. We derive and
analyse averaged equations for the angular momentum and the energy of the classical
motion. The unfolded system possesses four different types of non-trivial solutions:
a steady-state and three others, which are referred to in a wave context as travelling
waves, standing waves and modulated waves. The plane of unfolding parameters is
divided into a number of regions by (approximately) straight lines corresponding
to primary and secondary bifurcations. Crossing one of these lines leads to the
appearance or disappearance of a particular solution. We locate secondary saddle-
node, Hopf and pitchfork bifurcations as well as three different global, i.e. homoclinic
and heteroclinic, bifurcations.

1. INTRODUCTION

As has long been recognized, multiple (or degenerate) bifurcations hold the key to the
understanding of the origin of complicated behaviour in physical systems (see, for example,
Guckenheimer 1984). Near such bifurcations, secondary and higher-order bifurcations leading
to such behaviour are accessible to a large extent analytically, and a complete analysis of the
system 1is often possible. This is because near such bifurcations the system is described by a
low-dimensional set of ordinary differential equations, resulting in a dramatic reduction of the
number of degrees of freedom. This is particularly valuable for studies of systems that are
described by partial differential equations (i.e. that have an infinite number of degrees of
freedom). Typically, it has been found that the phenomena predicted by such a local study
are robust in the sense that they persist for parameter values substantially far from those
required for the degeneracy. Thus, even though multiple bifurcations occur at special
parameter values, the analysis of their unfolding enables one to enumerate the variety of possible
behaviour of a system. For steady-state bifurcations, this programme can be carried out
completely by locating the ‘organizing centre’ for all the bifurcation phenomena, and unfolding
this singularity using the techniques of singularity theory (Golubitsky & Schaeffer 1984). The
theory is less complete in the case of bifurcations to dynamical behaviour, partly because a
number of issues concerning structural stability and genericity remain unsolved. None the less,
those techniques have met with a number of successes, including the analyses of the buckling of
plates (Schaeffer & Golubitsky 19%79), the stirred-tank chemical reactor (Golubitsky & Keyfitz
1980; Dangelmayr & Stewart 1986), optically bistable and tristable systems (Armbruster
1983; Armbruster & Dangelmayr 1985) and lasers with a saturable absorber (Dangelmayr
et al. 1985), and understanding the bifurcation phenomena in particle physics, solidification
and melting (Geiger et al. 1985) and in the dynamics and pattern selection in a number of
convection systems (Knobloch & Proctor 1981 ; Knobloch & Guckenheimer 1983 ; Golubitsky
etal. 1984; Arneodo ¢t al. 1985), as well as the variety of states and the transitions between them
in the Taylor-Couette system (Golubitsky & Stewart 1986; Chossat & Iooss 1985).

Recently it has been realized that systems possessing a symmetry undergo generically
multiple bifurcations (Sattinger 1979). Such systems are therefore expected to exhibit more
complicated behaviour. However, the presence of the symmetry facilitates the analysis of such
bifurcations by restricting the structure of the ‘normal form’ equations, and therefore makes
the study of equivariant systems particularly rewarding.

Several symmetries occur with great frequency in physical systems. The commonest is the
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NILPOTENT BIFURCATION WITH O(2)-SYMMETRY 245

Z(2) reflectional symmetry that arises for example in the plate buckling problem, or in
convective systems in which there is no distinction between clockwise and counterclockwise
motion. Nearly as common is the symmetry O(2), the symmetry of the circle under rotations
and reflections. Apart from systems with an obvious O(2)-symmetry, such as the motion of a
suspended flexible tube with water running through it (Bajaj 1982), or the motion of water
in a circular dish oscillated vertically (Ciliberto & Gollub 1985), O(2)-symmetry also arises
naturally in all spatially periodic systems. Consider, for example, a continuous system on a line,
with no distinction between left and right, and seek spatially periodic solutions. If we write

V(x) = w, e+ cc,, (1.1)‘
where £ is the wave number of the unstable mode, then invariance with respect to translations
by an amount d: x—x+d induces the action 1

SO(2): wy,—>e*dy,, (1.2)

i.e. rotation, whereas invariance with respect to reflection in x = 0 induces the action
Z(2): wy—>wy. (1.3)

Hence the dynamical system for the state vector w;,, must be equivariant with respect to the group
SO(2) xZ(2) ~ O(2).

In this paper we study a bifurcation with O(2)-symmetry that has a nilpotent linearization
at the origin. This bifurcation is a generalization to O(2)-equivariant systems of the Takens—
Bogdanov bifurcation with the linearization (in Jordan normal form) given by

HE| »

In the unfolding of the Takens—Bogdanov bifurcations both Hopf and steady-state bifurc-
ations occur, and the existence of a homoclinic connection can be established (Takens 1974).
Both homoclinic and heteroclinic connections can be established in the Z(2)-equivariant
problem (Knobloch & Proctor 1981). The O(2)-equivariant problem is even more interesting
because the variety of secondary and global bifurcations is substantially larger. Because of the
O(2)-symmetry, the Hopf bifurcation gives rise to what would be travelling and standing waves
in the continuous system (1.1). Both situations break the O(2)-symmetry, the travelling waves
being invariant under SO(2) and the standing waves under Z(2). In this paper, we adopt the
wave terminology for the solutions with these symmetries. In addition, we locate secondary
bifurcations that give rise to two-frequency waves (modulated waves) and study their
interactions with the steady states produced at a simple bifurcation.

The Takens-Bogdanov bifurcation with equivariance under O(2)-symmetry is also con-
sidered by Guckenheimer (1986); however, only the solutions which are invariant under Z(2)
are discussed, i.e. the standing waves and the steady state. The analysis of these solutions
is accomplished by the fact that in the fixed point set of the reflection contained in O(2) the
problem reduces to a standard Takens—Bogdanov bifurcation with Z(2)-symmetry. In this
simplification it is, however, not possible to deduce the stabilities of the two Z(2)-invariant
solutions with respect to variations transverse to the fixed point set. We are able to give a
complete description of all the different solutions, including the travelling waves and the

modulated waves, and their stability properties. g
18-2
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246 G. DANGELMAYR AND E. KNOBLOCH

The plan of the paper is as follows. In §2, we formulate the O(2)-equivariant problem and
derive the normal form equation. In §3, a scaling of the variables is used to obtain a truncated
normal form, which is then analysed in detail. The analysis is based on the observation that
with the scaling used the normal form is approximately hamiltonian. The hamiltonian system
can be solved completely by means of elliptic functions, and persistence of closed orbits under
the non-hamiltonian ‘perturbation’ is used to identify the solutions of the truncated normal
form. The development of this theory is presented in §§4-6 and follows the methodology used
by Knobloch & Proctor (1981) in their study of the Z(2)-equivariant problem. Throughout
the paper we find it useful to exploit a formal similarity of the present problem with a classical
dynamics problem: motion of a particle in a central force field, subject to small dissipation.
This similarity is not accidental, and is forced on us by the O(2) symmetry. Our results are
summarized in the form of bifurcation diagrams in the plane of the two unfolding parameters
(see §7). A discussion of the results is presented in §8. A number of applications of the theory
is immediate, and those are also mentioned in §8. Certain mathematical details are relegated
to the Appendixes.

2. FORMULATION OF THE PROBLEM

We seek a vector field that is equivariant under a representation of the symmetry group
O(2), the symmetry group of rotations and reflections of the circle, and has a nilpotent
linearization at the origin leading to both Hopf and steady-state bifurcations upon unfolding.
In general (see, for example, Golubitsky & Stewart 1985), there are two situations in which
a vector field, equivariant under a representation of a group I', can possess Hopf bifurcations:
either I' acts via the diagonal action on R™ @ R™ with an absolutely irreducible action on R™,
or I' acts irreducibly but not absolutely irreducibly on R™. In our case, the additional
requirement of a non-zero but nilpotent linear part selects the former action, that is, we need
the diagonal action of O(2) on R? @ R? which is absolutely irreducible on R2. The linearized
part then has the form

0, 1,

L= 1
0 [02 02]’ (2.1)
where 0, and 1, are, respectively, the zero and the identity operators on R2. This is the

appropriate generalization of (1.4). In complex coordinates, the desired action of O(2) is
represented by the operations

rotation (v, w) - (ei%v, e w), (2.2a)
. reflection (v, w) - (v, w), (2.25)

acting on complex vectors (v, w) € ¢? &~ R*. There are three basic functions that are invariant

under (2.2):
o, =W, o, =w? oy=1w+w. (2.3)

Any other invariant function is of the form f{o}, 7,, 7;) for some f: R®—>R. A general smooth
vector field that is equivariant under the representation (1.2) is given by

V=g v+gw

81V T8, s} (2.4)
w=gyv+g,w,

where g; = g;(0,,0,,03),j = 1, 2, 3, 4 are smooth real functions on R3,
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NILPOTENT BIFURCATION WITH O(2)-SYMMETRY 247

In this paper, we seek to study the dynamics of a versal unfolding of a system of the form
(2.4) near the origin (v,w) = (0,0), which has the nilpotent linearization (2.1). We proceed
by expanding the functions g; (j = 1,2,3,4) in a Taylor series to second order in v, w, and
neglecting higher-order terms. We obtain

0 = w+ (a,|v]% + b, |wl|?) v+ ¢, V2w + (aglv|2 + bylw|?) w+¢, sz,}
(2.5)

th = (ag|v]? + bylw]?) v+ ¢ V2w + (ay)v]? + b,y|w|?) w+ ¢, vw?.

Here a;, b;, ¢; (i = 1,2, 3, 4) are real coefficients. It is convenient (indeed, essential) to simplify
these equations by means of a near-identity O(2)-equivariant coordinate change of the form

0= 0+ (ol 4 BJul?) 04y, 0T+ (ol + Bolul?) w+y, T, } (2.6)

w = w + (aglv2+ Bylwl?) v+ y; v*w+ (ory|v]? + B,lwl|?) w+y, vw?,

where the real coefficients a;, f;, v; (1 =1,2,3,4) are to be chosen to achieve maximum
simplification of (2.5). We first write (2.5) in the primed variables:

v = w' + (a; + o) |20 + (ay — 200, + &) V|20’

+ (by—ay+ By —27)) w0 + (by— By + By — 7o) W' |Pw’

+ (6, — 0y +Y5) VW + (cu—ay+7y,) w3 + 0(5), (2.70)
W = ag|v’|%’ + (a,— 20,)|[v'|Pw’ + (by — oty — 275) [w'|20

+ (by— s —yo) w20 + (c—ag) V2w + (¢, —oty) W'

+0(5). (2.7b)

We find it convenient to choose a;, 8;, v; (1 = 1,2, 3,4) to eliminate all cubic terms in (2.7a).
In particular, we choose a; = —a,. We also choose «, = ¢,. Because «, is chosen to eliminate
the second term in (2.7a), we must take a;, = 3(a,+¢,), and hence to eliminate the fifth term
in (2.7a) we require y, = —¢,; +1(a,+¢,). This implies that the first three terms as well as the
fifth term in (2.76) cannot be removed by the coordinate change (2.6). There is no obstruction
to the elimination of the fourth term in (2.754). To third order, we are therefore left with the

dynamical system
V= w,
} (2.8)

w = [A|v|?+ Blw|*+ C(vw +vw)] v+ Dlv|*w,
where A=a;, B=by—a,+2c,—2c,
} (2.9)

C=c¢;+a, D=a,+a —c,

In writing (2.8) we have dropped the primes and all higher-order terms.
To study the bifurcations associated with the linearization (2.3), we need to unfold the system
(2.8). We do this by adding small linear equivariant terms to (2.8). Without loss of generality

we write

V= w,

} (2.10)
w = pv+vw+[Alv|>+ Blw|*+ C(vw +vw)] v + Dlv]*w.
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248 G. DANGELMAYR AND E. KNOBLOCH

We shall refer to #,v€R as the unfolding parameters, and to (2.10) as the normal form for
this O(2)-equivariant bifurcation problem.

Some remarks are in order concerning structural stability and genericity. We use a weak
form of structural stability, namely that the qualitative structure of the bifurcation set in the
space of unfolding parameters (u,v) be preserved under perturbation. In this paper, the
bifurcation set is defined by the collection of those lines in the (g, v)-plane where bifurcations
to steady states, standing and travelling waves and modulated waves take place. For the normal
form (2.10), these lines turn out to be straight. Higher-order terms will produce curved lines
but the slopes at the origin are preserved, provided a finite set of non-degeneracy conditions
for the coefficients 4, C, D are satisfied (see §7). This follows directly from the calculations
carried out in the subsequent sections and justifies the neglect of higher-order terms. From that
point of view the system (2.10) is also generic (up to the relevant co-dimension in O(2) systems)
because two non-degeneracy conditions for the linear part and a set of non-degeneracy
conditions for the cubic Taylor terms must be satisfied by an arbitrary (m > 2)-parameter family
of vector fields. Hence, given, for example, a three-parameter family of O(2)-equivariant vector
fields, we expect the system under discussion to occur on certain smooth lines in the space of
parameters.

3. ELEMENTARY CONSIDERATIONS

In this section, we begin our study of the dynamics described by the normal form (2.10).
We first show that such a study can be undertaken analytically by a proper rescaling of (2.10),
and then show that it can be cast into the form of a central-force problem with a slowly varying
energy and angular momentum. We introduce the elementary solutions to this problem, the
steady states and the travelling (rotating) waves, interpret them in terms of the motion of a
particle in a potential, and describe their stability properties. Other solutions (standing and
modulated waves), whose existence can be established by means of the method of averaging,
are deferred to §4.

3.1. Scaling of the normal form equation

The appropriate scaling that renders the present problem analytically tractable is suggested
by a previous study of the Z(2)-equivariant problem (Knobloch & Proctor 1981 ; Guckenheimer
& Knobloch 1983). We introduce a slow time 7 defined by

T = €, (3.1)
where € is a small parameter, and scale v and the unfolding parameters according to
v>ev, u->eu, v->edv, (3.2)
With this scaling, the normal form (2.10) becomes
v —€[vo’ +C(vv" +v0") v+ D|o|>'] — (u+ A|v|?) v = O(€?). (3.3)

Here the prime denotes differentiation with respect to 7. Note that the coefficient B does not
enter at leading order in €. The situations described below depend therefore only on the choice
of the three coefficients 4, C, D (and the unfolding parameters). This is in contrast with the
Z(2)-equivariant problem, in which the solutions depend on two coefficients only.
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NILPOTENT BIFURCATION WITH O(2)-SYMMETRY 249

We can cast (3.3) into a more familiar form by introducing real variables (7, ¢) defined by

v=rel; (3.4)
(3.3) then becomes
7 —r¢’t— (u+Ar?)r = e[v+ (2C+ D) r*] " + O(€?), (3.54)
19" +2r'¢” = e(v+ Dr?) r¢’ + O(€?). (3.56)
These equations suggest that we define the ‘angular momentum’
, L=r¢ (3.6)
and the ‘potential’
V=112/r—1u?—14n4, (3.7)
so that (3.5) can be written in the form
7 +0V/3r = e(v+ Mr2) v + 0(e?), (3.84)
L' =e(v+Dr?) L+ 0(e?), (3.8b)

where M = 2C+ D. Together with (3.6), the equation for the phase ¢, the system (3.8) is
equivalent to the complex equation (3.3). Note that when € = 0 this system describes the motion
of a particle in a central force field with potential (3.7). This motion is specified by two constants
of motion, the ‘energy’ E given by

E=1rt+V(r), (3.9)

and the angular momentum L. In the limit €} 0, these two constants evolve on a superslow
time scale €7, and this provides the basis for the method of averaging employed in §4.

3.2. The potential V(r)

The key to the understanding of the different types of solutions admitted by the system (3.8)
is provided by the form of the potential (3.7). In this section, we sketch the potential for different
choices of the parameters 4, # and L2, and identify the solution types.

When L% = 0 there is no centrifugal force, and the motion is then purely in the radial
direction. Typical potentials are shown in figure 1a—c. In figure 1d,¢ we show the effect of
non-zero L% The resulting motion is an orbital motion in the ¢-direction with a superposed
oscillation in the radial direction.

These figures assist us in describing the following five simple solutions.

(i) The trivial solution (T), r = 0, L* = 0. This is the time-independent solution that exists for
E = 0, and all values of the other parameters. Note that when r = 0, L2 must also vanish. This
solution is equivariant with respect to the full symmetry group O(2).

(ii) The steady state (SS), r > 0, L = 0. This time-independent solution is present for energies
corresponding to the extrema with r # 0 of the potential V(r) for L* = 0 as in figure 14,¢. The
steady state is taken into a whole circle of steady states by the action of O(2).

(iii) The travelling waves (TW) occur for L2 > 0, and for energies corresponding to an
extremum of the potential (cf. figure 14, ¢). Hence, there is no oscillation in the radial direction,
but because L? > 0, these solutions describe orbital motion with constant angular frequency
L/r*. We call these rotating (or travelling) waves. Because they can rotate in one or more
directions they break the O(2)-symmetry, but respect the symmetry SO(2) < O(2).
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(d) A<0,L*>0 (6) A>0, u<0, >0

Ficurke 1. The potential V(r) for different choices of the parameters.

(iv) The standing wave (SW) occurs for L2 = 0, and is an oscillation in the radial direction.
There are two types: oscillations about the trivial solution T as in figure 14, b, and oscillations
about a steady state (SS) as in figure 1¢. Note that in the latter case both types of standing
waves can occur, depending on the choice of the energy E. The standing waves also break the
O(2)-symmetry but they respect the Z(2)-symmetry.

(v) The modulated waves (MW) occur for L? > 0 and energies that allow oscillations in the
radial direction as well. The motion is a two-torus, with one frequency corresponding to the
orbital motion, and the other to radial oscillations.

Note that both the standing waves and the modulated waves are parametrized by the energy
E, and the latter by the angular momentum as well. Thus, further conditions are required to
specify them uniquely. This is provided by the requirement that the small dissipative terms
in (3.8) do not destroy the oscillation over time 7 = o(e~?). This is accomplished by the method
of averaging, and is deferred to §4.

3.3. The elementary solutions and their stability

We introduced above the three simplest solutions of the System (3.8). We now give a detailed
description of each of them together with their stability properties.

(i) Trivial state (T)

This is the solution r = 0, L2 = 0. Because of the O(2)-symmetry, it is present for all values
of the parameters # and v. The stability of this solution is described by a quadratic eigenvalue
equation for the growth rate A

Al—evd—pu =0. (3.10)
A bifurcation producing steady-state solutions occurs when A = 0, i.e. along the line

Ly: p = 0. (3.11)


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NILPOTENT BIFURCATION WITH O(2)-SYMMETRY 251
A Hopf bifurcation occurs along the half-line
Hy:v=0, p<0, (3.12)

and leads to both travelling (rotating) waves, and standing waves. The O(2)-symmetry forces
both types of solutions to appear simultaneously. The travelling waves break the Z(2)-symmetry
of the trivial state, while the standing waves break the SO(2)-symmetry (cf. Golubitsky &
Stewart 1985). As a function of # and v the two eigenvalues A behave as follows: when z > 0,
one is positive, and one negative; as y decreases through zero, for v > 0 the negative eigenvalue
becomes positive. For v < 0, g decreasing through zero produces two negative eigenvalues.
Finally, if 4 < 0, then for v < 0, there is a complex pair of eigenvalues with negative real part,
which becomes positive as v passes through zero.

(ii) Steady state (SS)
These O(2)-equivariant time-independent solutions have zero angular momentum, and a
non-zero amplitude 7, given by
p+Art =0; (3.13)

they bifurcate from the trivial solution at g = 0. Their stability is determined by linearizing
the system (3.8) about the solution (3.13). We let

r=ry(l+7), L=§, (8.14)

and obtain ‘
1" —e(v—(M/A)p) 9 +2pn = 0,  (3.1509)
£ =ev—(D/A)p)E. (3.158)

The stability is described by the three eigenvalues of (3.15).

Apart from the bifurcation at g = 0 producing the SS-branch, the only bifurcation to
time-independent solutions occurs when the eigenvalue A, in the L-direction vanishes. This
bifurcation produces solutions characterized by constant energy and angular momentum, and
we call such solutions travelling (rotating) waves. They bifurcate from the SS-branch along
the half-line ‘

L,:Av=Dp, Ap<O0. (3.16)

When 4 < 0 there can also be a secondary Hopf bifurcation from the SS-branch occurring on
the half-line
Ly:Av=My, p>0 and A<0. (3.17)

This bifurcation produces small-amplitude oscillations about a non-zero steady state, and will
be discussed in detail in §5. There are no other local bifurcations from the SS-branch.

To determine the stability assignments, we observe that when 4 > 0, the steady states exist
only in # < 0. Then, of the two eigenvalues of (3.15a) one is positive and one negative. The
L-eigenvalue is positive in {v > Du/A,p < 0}, and negative in {v < Du/A4,p < 0}. When
A <0, the steady states lie in g > 0. Now, there are two eigenvalues with ReA > 0 in
{v>Mp/A,u > 0} and ReA < 0in {v < Mu/A, p > 0}, whereas the third'cigenvalue A, >0
in{v>DufA,p>0}and A, <0in{v <Du/A,p > 0}.

19 Vol. 322. A
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(iii) Travelling (rotating) waves (TW)

These solutions have a constant amplitude, 7,, and a constant circular frequency, ¢’ = w,,
given by
v+Dr=0, wl=—(u+A4r), (3.18)

and exist provided 7,, w, are both real. They bifurcate from the trivial solution at ¥ = 0 with
a branch of standing waves (see §5). We note that in the case 4 > 0, 7, is 2 minimum of the
potential V(r) for 4 < 834v/2D and a maximum for z > 34v/2D. In the case 4 < 0, 7, is always
a minimum of V¥ (see figure 14, ¢).

* To study the stability properties of the travelling waves we let

r=r(14n), L=L(1+£), | (3.19)

where L, = 1§ w,, with 7, and w, given by (3.18). Linearizing the system (3.8) in 7, £ and
eliminating £, we obtain the third-order equation -

77"’+2ev%77 — (4u— (64/D)v) 5’ —4ev(u— (A/D)v) = 0. (3.20)
There are steady-state bifurcations when v = 0 (the beginning of the TW-branch), and along
the half-line Av = Dy, Ax < 0. When approaching this line, the circular frequency 0, of the
travelling waves tends toward zero, and the TW-branch joins the SS-branch, as already
explained in the preceding subsection. o

It is also possible to have a secondary Hopf bifurcation from the TW-branch. To see this,
let 7 oc exp (iwr), and set the real and imaginary parts of (3.20) equal to zero. The resulting
conditions may be written in the form :

w? = — (44— (64/D)v) = (4D/(M—D)) w2, @321

Because w? > 0, the secondary Hopf bifurcation can only occur when M/D > 1. In the
unfolding plane, this bifurcation lies along the half-line

év, p< év.' (3.22)

Ly p=[(3M—5D)/(2M—4D)1 5 5

This Hopf bifurcation introduces an explicit time dependence into the dynamics: oscillations
with the new frequency ® in both the amplitude r and the angular momentum L, and
corresponds to the formation of a two-torus in the dynamics of (3.5). We shall call this new
solution branch the branch of modulated waves (MW). Its properties are discussed in §6.

We now describe the stability assignments resulting from a linear stability analysis on the
"TW-branch. Because the branch bifurcates at v = 0, we expand the three elgenvalues A of
(3.20) in powers of v:

ReA = e[ (2D~ M)/D]+0(*), A, =—ev+0(?). (3.23)

For D >0, the TW-branch lies between the half-lines H, and L,, in v < 0. We consider first
-the case 4> 0. If M < 2D, there is no secondary Hopf bifurcation, and from (3.23) the stability
assignments are (— — 4 ). When 0 < 2D < M, there is a secondary Hopf bifurcation; and the
stability is (+ + +) between H, and Ly, and (— — +) between Ly and L,,. When D < 0,
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the branch lies in v > 0. Again, when M > 2D, there is no secondary bifurcation and the
stability is (+ + —); when M < 2D < 0, the assignments are (— — —) between H, and Ly,
and (+ + —) between Ly and L,,. When 4 < 0, additional possibilities arise. Although there
is still no secondary bifurcation when M < D (D > 0), it does occur when 0 < D < M < 2D,
and stability changes from (— — +) to (+ + +). There is, however, no secondary bifurcation
when M > 2D > 0, and the stability remains (+ + +). When D < 0, there is no secondary
bifurcation if D < M, but there is one when 0 > D > M > 2D, and the stability changes from
(+ + —) to (— — —). Finally, when 0 > 2D > M, the TW-branch is stable throughout. These
results will be used to draw the bifurcation diagrams (see §7).

This concludes our discussion of the elementary solutions. In the next section we turn our
attention to the remaining two classes of solutions: the standing and modulated waves.

4. THE AVERAGED EQUATIONS

For € = 0, the system (3.8) is an integrable hamiltonian system with E, L being the constants
of the motion. Consequently, there is a two-parameter family of invariant tori in the
four-dimensional phase space. If we ignore the decoupled phase, ¢, the family of tori reduces
to a two-parameter family of closed orbits in (r, 7, L)-space. As explained in §3, we distinguish
between closed orbits with L = 0 (SW) and orbits with L # 0 (MW). For € # 0, most of the
closed orbits are destroyed, but some of them may persist under the non-hamiltonian
perturbation. To find out which orbits persist, we apply the method of averaging. In this section
we derive averaged equations for the classical constants of motion, E and L, by means of
intuitive arguments. A formal justification is given in Appendix A. The analysis of the
SW-solutions and MW-solutions is deferred to §§5 and 6, respectively.

4.1. The structure of the (E, L?)-plane

Much of what follows is based on the functional dependence of 7 « on E, L2 and p in the
integrable system (3.9). We introduce the varlable s=1% and wrlte

¢ = 2/[P(s)], P(s) = Ms>+pst+2Es— L2, . (4.1)

Of particular importance is the root structure of the cubic P(s). When P has three distinct real
roots we denote them by s;, i = 1, 2, 3, and order them according to s, < 5, < s5,. Positive roots
correspond to turning points of the classical motion. Two coalescing positive roots give rise to
a stationary point of (3.9). If L2 = 0 there is always one zero root, and two roots coalesce when
P(s) = dP(5)/ds = 0. If confined to s > 0, the latter equations define a bifurcation set in the
(L? = 0, E, p)-half space such that across it the number of positive roots changes by two. In
figure 2 we have sketched the b1furcat10n set for fixed ,u in the (L2 ) -plane and the form of
P(s)ins>0for L2> 0 and L2 = :

4.2. Derivation of the averaged equations

The non-conservative perturbations in (3.8) induce a slow rate of change of the energy and
the angular momentum ,

= e(Mrt4v) 't + e(Lz/rz) (Dr*+v) +0(e?), (4.2)
= e(Dr2+v) L+ 0(e?). (3.8b)

19-2
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(b) A>0,4>0 (d) A<0,p>0

Fioure 2. The bifurcation set in the (E, L?)-plane for fixed x and the root structure of P(s) in s 2 0. The bifurcation
set is given by (27A4L*—8u®+36A4Eu)? = 64(ut—3A4E)® with the restriction E2> 0 if 2 <0 and g <0 if
A4 > 0. In (a) and (d), E, = p*/44. The cusp point C in (a) is given by (E, L) = (u?/34, —4u3/274%).

In the method of averaging, the right-hand sides of (4.2) and (3.85) are averaged over one
period of a closed orbit corresponding to the unperturbed system, i.e. the radial variable is
integrated out leaving a decoupled system for (E,L). Substituting s" = 24/[P(s)] into the
right-hand side of (4.2), (3.84) and carrying out the s-integration yields the system

E = ¢f(E, L%, (4.34)
L' = eLg(E, L?), (4.3b)
where |
FEL) =3 [ S (Ms4) o/ [P0+ LD+ ), (4.40)
0Js_
¢(E,L¥) = v+DJ/J,. (4.45)

Here, the integration limits are the zeros of P(s),
((ss,s,) for 4>0

(o8 =) for d<0

(see figure 2), and the J,, are standard elliptic integrals, defined by

7, = f " ds st IVIPE)], n=0,1, -1 (4.5)
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Note the symmetry L——L of the system (4.3). The period of an underlying closed orbit
corresponding to given (E, L) for € = 0 is J,. There are recursion relations (see, for example,
Grobner & Hofreiter 1975) that allow one to reduce any integral containing rational functions
and the square root of a cubic to a linear combination of the three integrals (4.5). Applying
these relations to the first integral in (4.44), we obtain

fE, I?) = %(v—%%‘-)m (D—3M) L2+(§ﬂv+§ME—%,u2)§:. (4.6)

Note that the J_,-integral (an elliptic integral of the third kind), which appeared in (4.4a)
has disappeared in (4.6). Equations (4.3) and (4.45) are the averaged equations on which the
analyses in §§5 and 6 are based. A more formal derivation of these equations in terms of
action-angle variables is presented in Appendix A. There are theorems (see, for example,
Guckenheimer & Holmes 1983) that state that hyperbolic fixed points and limit cycles in the
averaged equations correspond to hyperbolic limit cycles and two tori in the original system
of the same stability types. Hence, the averaged equations describe the essential features of
the original system.

4.3. The variables k and p

Closed orbits of the original system (3.8) correspond to steady states of (4.3), i.e. to any (E, L)
satisfying f(E, L?) = 0 = Lg(E, L*) there corresponds a unique periodic orbit of the perturbed
system (3.8) (a two torus for (8.5)), parametrized by ¢, that tends for €0 to the periodic
solution of the unperturbed system associated to the given values of (E,L). The stability
assignment of such a closed orbit is the same as that of the corresponding stationary point of
(4.3). Consequently, we have to analyse the solutions of f = 0 = Lg to discuss the periodic
solutions of (3.8). The SW-solutions satisfy L =0, f(E,0) =0 and the MW-solutions are
determined by f(E, L?) = 0 = g(E, L?). For the analysis of these persistence conditions, it is
convenient to express the standard elliptic integrals J,, J, in terms of Legendre’s canonical
complete integrals X (k) and & (k) of the first and second kind, respectively, with modulus

($g—355)/(s5y—33) for A > 0;
k2 = 0<k<1. (4.7)

(5y—=55)/(s5,—s;) for A <O0;
From Grobner & Hofreiter (1975) we obtain
CJy(E, L%, p) = A (k),

s, H (k)= (s,—33) E(k) for A> 0,}

CJL(E, L% p) = {_, (4.8)

s K (k) + (s,—s5) (k) for A<O,
where C = 27| A4|(s, — 55) 12

Because X, & depend only on one parameter, £, it is also convenient to parametrize £ and
L in terms of £ and a further parameter, p, which is defined in terms of the roots as

s,—53) /53 if A>0, ‘
p={(’ ae 0<p< . (4.9)

—k3s,/s, if A<O,
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In terms of these variables we obtain (k2 = 1—#2):

A> 0: E = p3h2{(1+p) (p+2k2) + p+ K2}/ AN®, |
o } (4.10q)
L2 = — 4% (p+ ) (14p) /A2N°, |
with N =3k 4p(1+42);
A< 0: E = p2 k(B —p) (1+p)—pk'2}/AN?,
LREH (K —p) (1+p) —pk?}/ } (4.108)
L? = 43Kk 4p(1 +p) / AEN?,

with | N = R(1+p) +F2 (K —p).
The roots s,, s,, 53 can also be expressed in terms of (£, p, p):
A>0:s5,=—2u(p+k) /AN,
sy = —2uk?(14-p)/AN, - (4.11a)
sq = —2uk?/AN,

A<0:s5, =—2uk*(1+p)/AN, _
| s, = —2uk?2/ AN, (4.115)
sg = 2upk’*/AN. '

The persistence conditions f = 0 = Lg may now be rewritten in terms of the new variables
(k, p) and the unfolding parameters (%, »). This has the advantage that fand Lg become rational
functions of p, k, @ (k) and g, v, i.e. only one of the new variables, £, appears as an argument
of the transcendental function

(k) = E (k) H (k). (4.12)

Of course, instead of p, various other choices are possible for the second variable. In fact, any
rational linear function of the roots will do the job. The choice (4.8) appeared to us most
convenient. We make full use of this procedure in §§5 and 6.

4.4. Stability considerations

According to the averaging theorem, the stability properties of the solutions to the averaged
equations (4.3) translate directly to the solutions of the original system (3.8). In the following
sections we shall therefore address the stability of stationary solutions (E,, L,) of the system
(4.3). Solutions with L, = 0 are the standing waves (SW), whereas those with L, # 0 are the
modulated waves (MW). Their stability is described by the eigenvalues A satisfying

A —(fpt+g+2L%g;:) A+ fpg+ 2Ly fp g1 —f1288) = O, : (4.13)

where f, g and the derivatives, indicated by subscripts‘, are to be evaluated on the solutions.
Equation (4.13) becomes particularly simple for the standing waves (L, = 0), where the two
eigenvalues are

Ap = (B, 0) /3, Ay = g(E,,0). (4.14)
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In the following, we have occasion to make use of the expression for fg(E,, L,). From (4.6)
we fird

A, My, ﬁ_[é(' _%) _3 2]£gi_{;
fE(Eo,Lo)—3(V 5A)+5MJ0 s\" 54 Ey+ (D—3M) L? J,3E 7, (4.15)
We obtain a particularly simple form in the case L, = 0:

Je(Eg, 0) = v+ M(J,/Jy). (4.16)

5. THE STANDING-WAVE SOLUTIONS

The SW-solutions have zero angular momentum and thus break the SO(2)-symmetry. They
are determined by the solutions E of
SfE,0) = 0. v (5.1)

If we put L = 0 in (3.8) and consider only the equation for the amplitude, r, we recover the
versal deformation of the Z(2)-equivariant normal form of a planar vector field with a nilpotent
linear part that has already been analysed in detail (Knobloch & Proctor 1981). The only
difference between the two is that here there are two eigenvalues that determine the stability
of a closed orbit corresponding to a solution E of (5.1), whereas in the planar case only the
sign of 0f/0F matters. Because of the reflection symmetry of (4.3), the two eigenvalues associated
with a solution E of (5.1) are

AE = af(E, O)/aEa AL = g(Ea O)a (5-2)
which we refer to as the E-eigenvalue and the L-eigenvalue, respectively. If Az = 0, we have
a saddle-node (or limit-point) bifurcation, whereas for A; = 0, (4.3) undergoes a secondary
bifurcation, i.e. an MW-solution branches off the SW-solution. Our discussion is conveniently
divided into two parts..

5.1. Thecase A> 0
In this case, the SW-solutions are always oscillations about the trivial solution, and occur
for py <~ and 0 =s; < s <s, (see figure 2). The condition s, = 0 implies p = c0 (cf. (4.8))
and yields .
2 _ 2uk? Y
As, = T+ As, = TR AE_(l+k2)2' (5.3)
At leading order in €, the SW-solution satisfies
2 =,\éA(52_’2) (53—71%), '

which has the one-parameter family of solutions given in terms of an elliptic function of modulus
k by ~
1 =s,n%0, 0= (34s,)r.

To relate £ to the other parameters we use the persistence condition (5.1), which we express
in terms of £, v and £ by eliminating s,, s, and E between (4.6), (4.7) and (5.3). We obtain

5Av = 2MuR,(k), (5.4)

K1 +E?) 2K+ 4) D (k)
TR FEI—(1+8) D(k)]

where R, (k) (5.5)
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For small £, the amplitude of the solutions is also small. Because R, (k) = 3%+ O(k*) for k2 < 1,
we see that the SW-solutions bifurcate from the trivial solution along the line Hy(v = 0, % < 0),
and into the region Mv < 0, # < 0. On the other hand, as £~ 1 —, the period of the oscillations
tends toward infinity, and the SW-solutions undergo a saddle-loop bifurcation. Because
D(k) ~ 1/In (4/F)+O(F), k¥ < 1, we see that R, (k) >} as k> 1—, and hence the saddle-loop
bifurcation occurs on the line

SLg: 54v = Mp, p<O0. (5.6)

As k increases, the amplitude of the oscillations increases monotonically, and the SW-
branch terminates with the formation of a heteroclinic orbit connecting the saddles
r= +4/s5, = +4/5s,. Thus the SW-solutions exist in the region of the (x, v)-plane bounded by
the lines H, and SLg.

The standing-wave solution encounters a stability exchange when the L-eigenvalue changes
sign, i.e. when g(E, 0) = 0. In terms of £, g(E, 0) is given by

a8,0) = v—225(1220). (5.7)

Setting g = 0 and by using (5.4) shows that the L-instability occurs on the half-line

2Dp(1 — (k)

Ls:Av= 1+k2 5

© <o, (5.8)

where £ satisfies
D KA1+ K2) —2(k2+ k) (k)

Mo Ry (k) = 5(1—D(k)) [K2—(1+£2) D(K)]

(5.9)

The function R, (k) decreases monotonically from } to 1 as £ increases from 0 to 1. Hence, the
L-instability is present only if} < D/M < 1. This bifurcation produces the branch of modulated
waves.

The E-eigenvalue is easily found from (4.16):

feB,0) = v- 20 (L2)

2Mpu 1—D(k)
=—5A—[Rl(">‘5 T3e ]

(5.10)

because Az must be evaluated on the SW-branch, i.e. on (5.4). The term in the square brackets
is always negative (for £2 > 0), so that Ay has the same sign as M, and an E-instability does
not occur.

We now turn to the stability assignments. We first observe that the SW-solutions exist for
(¢, v) in the region bounded by the lines H, and SLg, with My < 0, u < 0. It is readily shown
from (5.7) and (5.4) that

Ap=v(1—2D/M)+0(k?), K <1. (5.11)

Hence, we have the assignments (sgnAg, sgnd;) = (sgn M, sgn M) for 1 < D/M; (sgn M,
—sgn M) between the lines H,, Lg, and (sgn M, sgn M) between Lgand SLgwhen < D/M < 1;
and finally (sgn M, —sgn M) when D/M < 1.
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52 leecaseA<O

From figure 2 we infer that SW-solutions occur in two dlﬁ'erent ways, i.e. we can have
oscillations about the trivial solution (zero mean) and about the non-trivial steady state
(non-zero mean). The former arise if s, = 0 implying p = 00, and the latter occur for s, = 0
implying p = 0. We denote these two types of SW-solutions by SW, and SW,, respectively,
and treat them separately.

(a) The SW ,-branch

The condition p = 00 yields the following expressions for the roots s, s; and the energy,
_2uk® 2uk® ___ pkRE

TRk BR—k? AE = [

where pu(k2—k?) > 0. At leading order in €, the SW,-solution satisfies 7’2 = 1A4(s, —1?) (s, —1?)
with the solution

As, = Asy = (5.12)

=ys5,0n%0, 0= [34(s;—s,))ir.

Substituting (5.12) into (4.6—4.11) allows us to express the persistence condition in terms
of k. We obtain
5Av = —2MuR,(k), (5.13)

F2(14£2)— 2(K2 + k) D(k)
(K=K [K2+ (2= K2) B (E)]

where Ry(k) = (5.14)

For small k, R; ~ 3k%, so that SW, branches off the trivial solution on H, into the region
My < 0. We note that R,(k) > + o0 if i2>1F, i.e. # = 0 along SW, for £? = 1.
Proceeding as in 5.1 we find that the L-eigenvalue is given by

2D (k'z—qs(k))'

Av=virnTEmer

with an L-instability along the line

—}2
Lg,: Av = 2Dﬂ(%c—)_—k,—li——), p <0, (5.15)
where £ satisfies
D _ —KEAHEY 2K+ D(k)

= BB = 5w e m e (0] (5.16)
Inspection shows that R,(k) increases monotonically from 1 to co as  varies from O to 1; hence
the L-instability is present for D/M > 1. For small &, A, is again given by (5.11).

The E-eigenvalue, Ag, takes the form

2Mp(D(k) —F?)
KE—Fk?

ACAg = Av—
2M (5.17)

=~ BE—F) Ry(D) + B (k) — k7).
For small £2, the term in the square brackets behaves as 342, so that MAg; > O near £ = 0. An
E-instability (saddle-node bifurcation) appears when the term in the square brackets vanishes.

20 Vol. 322. A


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

260 G. DANGELMAYR AND E. KNOBLOCH

This occurs when &2 & 0.93 (Knobloch & Proctor 1981). Consequently, there is a saddle node
on the SW,-branch along the half-line

2Mp (P (k) —F?)
kZ _k’Z ’

or Av ~ 0.74Mu, up>0.

SNgy: Av = p£>0, k093, (5.18)

Finally, we consider infinite-period bifurcations. Because Ry(k)—> —2 as k—>1—, the
homoclinic (actually, ambiclinic) orbits lie on the line

SLg: 54v = 4Mp, p> 0. (5.19)

This line marks the smooth transition from the SW,-branch to a branch of non-zero-mean
standing waves, SW,.

The stability assignments are as follows: sgn Az = sgn M between H, and SNg,, and —sgn M
between SNg, and SLg; sgnA, = —sgn M if D/M < %, whereas if D/M > 1, sgnA; =sgn M
between Hj and Lg,, and —sgn M between Lg, and SLg.

(b) The SW-solution

We now describe the branch of non-zero-mean standing waves for which s; = 0, p = 0, and
2u o 2uk? Y%
ixpe Ae=1e AE=qrmme #>0 (5.20)

The SW-oscillations satisfy 72 = 4(r*—s,) (r* —s,) with the one-parameter family of solutions

2 =s,dn%0, 0= (—1ds)h.

As, =

Procecding as before, we obtain the following persistence condition,
5Av = 2MuR (k), p> 0, (5.21)

_ KRL+KY) —2(K2+ 1) B (k)
S U+ 2K = (1+ kD) B(R)]

where Ry(k) (5.22)
Near k£ =0, Ry ~ §—&k*+ O(k°). Consequently, (5.21) approaches the line L,; (equation
(3.17)) as k40, and the SW-branch bifurcates from the nontrivial steady-state branch into
the region to the left (right) of L,, if M <0 (M > 0).

The L-eigenvalue is given by :
2D &)

/\L = V—Tﬂ l+k12’ (5‘23)
and hence the L-instability occurs on the half-line
D (k) |
Lgy: Av = 2Dp 7 M > 0, (5.24)
where £ satisfies
D K2(14-k2)—2(K2+ k) D(k
D = Rk = LUHE) 204 ) P (5.25)

5D(k) [2k2— (1 +K2) D(K)]~

Because R4 (k) increases monotonically from 1 to o0 as &2 varies from 0 to 1'—, the L-instability,
i.e. the bifurcation of MW from SW,, is present only if D/M > 1. Moreover, for small &2,
we find that g = v(1—D/M)+ O(k?). A further calculation shows that the SW,-branch does
not undergo an E-instability (a saddle-node bifurcation), and that it joins smoothly to
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SW, along the line SLg in an infinite period bifurcation. The sign of the E-eigenvalue is
always given by —sgn M. The stability assignments are therefore as follows: (sgnAg, sgnd;) =
(—sgnM, —sgn M) if D/M < 1; (—sgnM, sgn M) between the lines Ly, and Lg,; and
(—sgn M, —sgn M) between Lg, and SLg when D/M > 1.

This completes our discussion of the standing-wave branches.

6. THE MODULATED-WAVE SOLUTIONS

The modulated waves correspond to stationary solutions of the averaged equations with
non-zero angular momentum. They are determined by the solutions (E,L) of the pair of
equations

fIEL}) =0, gEL*)=0. (6.1
The most convenient way to solve (6.1) is in terms of the variables (£, p) introduced in §2. We
first substitute v = — DJ, /J, obtained from g = 0 into f, and express E, L and the roots s,, s,,
5, in terms of k and p. Then f = 0 reduces to an equation in (k, p) alone with the remarkable
feature that it depends linearly on p. This allows one easily to express p in terms of k. We obtain

p — 5Dk —2(1+ k%) (k) +3D(k)]
B = 5DFT— MK (1+ k) + 2[M(K+ k%) — 5D] & (k) + 5D(1 +#*) & (k)

(6.2a)

for A > 0, and

p_ =Mk +H2) 4 2L M(K2 4+ k) + 5Dk D () — 5D (1 + K'%) D2(K)
B~ ME2(1+F?) — 6Dk + 2[5DkK*— M(k* +k%)] D (k) + 5D (K> — k') B2(k)

(6.25)

for A < 0. Now we are in the position to relate £ to the unfolding parameters u, v by inserting
(6.2) into v = — DJ, /J,. This gives the following persistence condition for the MW-solutions:
_ 2Dpu(M—15DQ(k))
Av = SM—5D ) (6‘3)
_ D) (F2—0(k)) (1—P(k))
KA14+k2) =22+ k) D(K)”

We note that (6.3), (6.4) hold for both cases, 4 > 0 and 4 < 0. Equations (6.2)—(6.4) provide
a parametric representation for the MW-branches. Of course, so that an MW-solution can exist,
the unperturbed system (¢ = 0) must exhibit closed orbits with L # 0. For 4 > 0 this restricts
J to negative values but imposes no a priori restriction for 4 < 0.
The function Q(k) decreases monotonically from ¥ to 0 when £ increases from 0 to 1 (see
Appendix B). For small &, Q(k) = & —k*/320+ O(k®), which yields
2Du

Ay = oo AM— 2D+ Dk + O(k°)} (6.5)

where Q(k) (6.4)

for the local form of the persistence condition, and p behaves as

Dk .
p=vr—gptOK) for 4>0, (6.64)
p=— A"f_‘;zku O(K) for A<0. (6.65)

20-2
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If we substitute (6.6) into L?, (equation 4.9)), and then let £*| 0 we find, regardless of the sign
of 4, :
_ 44 (M—D)(M—2D)*

2 —
L A* (3M—5D)°

+O0(k%), (6.7)

i.e. the value that L? takes on the TW-branch along the line Ly, (3.22). Thus we recover the
Hopf bifurcation on Ly where the MW-solution branches off the TW-solution. Obviously
(because L? > 0, p = 0) the sign of # on MW must be such that the persistence condition (6.3)
defines a family of half-lines, parametrized by £, that tends to Ly, for k4 0. The region into
which MW bifurcates from TW is easily deduced from (6.4) because £2 > 0. This information
and a well-known theorem (Sattinger 1973) about the stability exchange at a Hopf bifurcation
tells us the stability of the MW-branch near Lg: If AMu < 0 and AMp > 0, MW bifurcates
from TW into the region obtained by clockwise and counterclockwise rotation of L, respect-
ively, with stability assignments (sgh M, —sgn (Mp)). Recall, however, that this Hopf bifurca-
tion is only present for 0 < D/M <1 if A> 0 and for § < D/M < 1 if 4 < 0. We deduced
these restrictions in §3; here they follow from the conditions p > 0, L? > 0. Note that p{ 0 as
k40, but L? tends to a positive value in the limit. This reflects the fact that the transforma-
tion (k, p, u) —> (E, L?, p) becomes singular for £V 0.

Because Q(k) never becomes infinite, the sign of # cannot change on the MW-branch.
Furthermore, because of the monotonic behaviour of (), there is only one single MW-branch,
i.e. saddle nodes do not exist. From these facts we conclude that there must be precisely two
half-lines lying in a half-plane corresponding to a fixed sign of # between which the MW-branch
exists. On these lines, MW must be created in a secondary bifurcation. There are three
possibilities: a Hopf bifurcation from TW, a secondary bifurcation from an SW-branch
(pitchfork-type bifurcation of a solution of (6.1) with L # 0 from a solution with L = 0), or
an infinite-period bifurcation where the frequency of the periodic orbit in (r,7, L)-space
corresponding to the solution (E, L) of (6.1) tends to zero, thereby producing a homoclinic orbit
of a hyperbolic stationary point, i.e. of a TW-solution whose 7-coordinate corresponds to a local
maximum of the potential V(r). The last transition is, however, only possible if 4 > 0 because
the potential has no maximum if 4 < 0. _

General stability calculations along MW are very tedious; therefore, we confine ourselves

to analysing local stabilities near the two half-lines of secondary bifurcations which, as explained
before, must lie in a half-plane given by a particular sign of . Because saddle nodes are not
present along MW, only stability exchanges of the type (4 +) <> (— —) are possible; these give
rise to a tertiary Hopf bifurcation in the averaged equations and produce a three-torus if the
decoupled phase, ¢, is included. If the assignment is (+ —) near one of the two secondary-
bifurcation lines, it must be preserved along the whole branch. If both signs in the stability
assignment are equal and the same at both ends of the branch, we shall make the plausible
‘conjecture that no tertiary bifurcation occurs; if they are opposite we conclude that a tertiary
Hopf bifurcation (in fact, an odd number) occurs. It will, however, turn out that the
assignments are always equal near both ends, i.e. there is no sufficient condition for a tertiary
Hopf bifurcation.

We have already computed all the possible half-lines leading to secondary bifurcations of
the MW-branch in §§3 and 5, apart from the global (homoclinic) bifurcation in the case 4 > 0.
This calculation is very easy because we only need to consider the limit £— 1 — in the persistence
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conditions (6.2, 6.3). As k- 1 —, the function @ (k) behaves as 1® + o(®) and the condition (6.3)
becomes :

2D |
Ay = m:%{M—gﬁquﬂ(@)} (k—>1—). (6.8)
For p we obtain
5D 3M—5D
p—M_5D{1—2(M_5D)¢+o(¢)}. (6.9)

Equation (6.8) shows that a homoclinic bifurcation appears on the half-line

2DMp

SLM: Av = m,

p<O0, (6.10)
provided that 0 < D/M < (because p > 0). In Appendix C the stability assignrhent near
SL,, is computed. It turns out to be (’sgn M, sgn M).

We are now in the position to give a complete picture of the MW-branch. We do this for
the two cases 4 > 0 and 4 < 0 separately.

(a) The case 4> 0

The Hopf bifurcation on Ly, exists if 0 < D/M < } and the homoclinic transition is present
for 0 <D/M <} In §5 it was shown that the SW-branch undergoes an L-instability if
1< D/M < , giving rise to a secondary bifurcation of MW from SW. We conclude that the
MW-branch can only exist in the parameter range 0 < D/M < 1. One line of secondary
bifurcations is always given by Ly. The other one corresponds to a homoclinic transition if
0 < D/M < % and to a secondary bifurcation from SW if} < D/M < 1. Because we know the
region into which MW bifurcates from Ly, the other half-line of secondary bifurcations must
be located between Ly and the negative (positive) v-axis for M > 0 (M < 0). The assignment
of MW near SL,, is (sgn M, sgn M). If we follow the SW-branch on a path parallel to the g-axis
in the region u < 0, starting at x4 = 0, then there is a supercritical bifurcation of MW from
SWon Lgift < D/M < }. From this we deduce the assignment (sgn M, sgn M) for MW near
Lg. In summary, the assignment near both ends of MW is always (sgn M, sgn M), i.e. tertiary
Hopf bifurcations can only occur in pairs.

(b) Thecase A <O

Here we have the Hopf bifurcation from TW on Ly for 3 < D/M < 1, the L-instability of
SW, for D/M >} and another L-instability of SW, for D/M > 1, i.e. half-lines of secondary
bifurcations exist pairwise in the parameter range $ < D/M < c0. If} < D/M < 1, we have
the Hopf bifurcation on Ly that allows us to draw similar conclusions as in the case 4 > 0.
From the results of §§3 and 4, and the local behaviour of MW near L, already described, we
find that Lg, is below (above) L if1 < D/M <% (8 < D/M < 1), and both half-lines are in
the region My <0, (D/M—3&) u > 0. The MW-branch exists between Ly and Lg,, and the
assignments near both ends are (sgn M, —sgn (Mu)). If D/M passes through 1, the Hopf
bifurcation on Ly for D/M < 1 disappears and is replaced by an L-instability on the
SW,-branch for D/M > 1. This does not, however, affect the L-instability of SW,. Con-
sequently, if D/M > 1, the halfline Lg, is located in the region x>0, My <O0.
The MW-solution bifurcates from Lg, into the region obtained by clockwise (counterclockwise)
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rotation of Lg, for M < 0 (M > 0), until it terminates on Lg,, which is located below Lyg,.
The assignment of MW near Lg, is still (sgn A, —sgn M ). Because saddle nodes do not exist,
this assignment must be preserved on the whole branch. Consequently, there are no necessary
conditions for a tertiary Hopf bifurcation in the averaged equations.

This concludes our discussion of the MW-solutions.

7. STABILITY DIAGRAMS AND BIFURCATION DIAGRAMS

In the preceding sections we have described the different types of non-trivial solutions
admitted by the normal form (3.3); in this section we bring all the pieces of information
together. We represent the results in two complementary ways. In the stability diagrams we
indicate how the solutions depend on the unfolding parameters x, v, whereas the bifurcation
diagrams show their dependence on a distinguished bifurcation parameter.

The plane of the unfolding parameters (#,») is divided into a number of regions by the
half-line H,, and the line L,, along which occur, respectively, the primary bifurcations to the
TW-solutions and SW-solutions, and to the steady states, and the half-lines, L,,, L,,, Lg etc.,
along which secondary bifurcations take place. In each region of the (,v)-plane, a certain
configuration of non-trivial solutions with specific stability assignments occurs that changes if
we pass into a neighbouring region. Crossing a line of primary or secondary bifurcations gives
rise to the appearance or disappearance of a non-trivial solution. In the case of local bifurcations
(Hopf or pitchfork type), the birth of a new solution is always combined with a stability
exchange of another solution from which the former branches off.

To summarize the results of §§ 3—6, we sketch the lines of primary and secondary bifurcations
in the (u, v)-plane. The existence domain of a particular non-trivial solution branch is marked
by a curve passing through it and connecting the two bifurcation lines where the solution is
created. Each curve is divided into pieces, separated by arrows, on which the branch possesses
a particular stability assignment (see figures 4 and 7 below). The resulting figure is called a
stability diagram. The trivial solution, T, is not included in the stability diagrams. Recall from
§3 that the T-solution exists for all values of (x, v) with assignments (+ —) in {¢ > 0} and (sgn v,
sgnv) in {# < 0}. For the SS-branch, the first two signs in the assignment correspond to the
(r,7")-eigenvalues and the third to the L-eigenvalue. Similarly, the assignment for the
SW-branch is (sgnAg, sgnA;). There is no such natural distinction between the eigenspaces
in the case of TW and MW.

For a fixed sign of 4 the stability diagrams change if we pass through certain straight lines
in the (D, M)-plane. Our analysis is not valid on these lines, i.e. we have to impose a number
of non-degeneracy conditions of the form D/M # ¢. Violation of one of the non-degeneracy
conditions gives rise to the coalescence of two or more bifurcation lines in the unfolding plane
(more precisely, their slopes at the origin because higher-order terms may prevent the lines
from being straight). If we pass through a critical value of D/M, then either an event may
occur where two or more independent bifurcation phenomena happen simultaneously, or our
normal form degenerates into a bifurcation of co-dimension three. In the former case, two or
more (u,v)-lines simply cross each other, i.e. their relative position changes. The latter case
is always combined with the appearance or disappearance of at least one line of secondary
bifurcations. ‘ '

- We now discuss the two sign cases 4 > 0 and 4 < 0 in turn.
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7.1. Thecase A> 0

There are four non-degeneracy conditions, namely, D # 0, M # O and D/M # 3, D/M #}
thatdivide the (D, M)-plane into eight regions, as shown in figure 3. The regions are enumerated
according to I +-IV + where ‘4’ or ‘=’ indicates the sign of M. Regions with the same roman
numeral but opposite signs are complementary to each other, i.e. all the lines of secondary

D
N
v+ D/M=1
I- : I+ D/M=1
I+
> M
I+
V-

Ficure 3. Division of (D, M)-plane for 4 > 0.

bifurcations and the regions between them are reflected at the p-axis and the signs in the
assignments of the non-trivial solutions are reversed. Therefore, we may confine ourselves to
a description of the case M > 0. The stability diagrams corresponding to regions I+ to IV+
are shown in figure 4. Before turning to the individual stability diagrams, we first recall the
meaning of the various half-lines giving rise to secondary bifurcations:

L,: TW bifurcates from SS,

SLg:  heteroclinic bifurcation of SW,

Ly:  Hopf bifurcation of MW from TW,

Lg:  secondary bifurcation of MW from SW,
SLys:  homoclinic bifurcation of MW.

In the stability diagram I+, no MW-solution exists. There are only the two secondary
bifurcation lines L,, and SLg, which are located on opposite signs of H,, i.e. SW and TW do
not exist simultaneously. When passing from region I+ to region II+, the line L,, crosses H,
and lies now between SLg and H,, thereby throwing off Ly and Lg and leading to the -
appearance of a MW-branch. Approaching the line D/M =1 from II+, SLg, L,, and SL,,
coalesce and disappear in region III+ where the role of the other end for MW is taken over
by Lg. Simultaneously, L,, and SLg have changed their relative position, i.e. SLg is now below
L,,. Finally, passing through D/M =}, L and Ly coalesce on H, and disappear in region IV +
where no MW-branch is present. If M = 0, SLg and H, coincide. We note that all the lines
in figure 3 correspond to degeneracies of co-dimension three.

In figure 5 we have displayed the stability diagrams of figure 4 schematically in terms of
bifurcation diagrams. These bifurcation diagrams are obtained by following a straight path
through the (4, v)-plane that starts in the region {# < 0, v < 0} and hits all lines of secondary
bifurcations as well as H, and, at a positive value of v, the line ;. Local and global bifurcations
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are indicated by dots and small circles, respectively. Note that a global secondary bifurcation
does not induce a stability exchange on the branch of ‘equilibria’ (TW or SS) on which the
_closed orbit (MW or SW) terminates. The choice of our path implies that the trivial solution
is always stable to the left of the first primary bifurcation and that the steady state bifurcates
subcritically. :

I+

L,
SS ot
o
+4= SLs
2z ™ L,
SLg SwW
u
H,

FiGure 4. Stability diagrams corresponding to the regions marked in figure 3.
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7.2, Thecase A< O

For 4 < 0, the (D, M)-plane is divided into 18 different regions by 9 lines through the origin

as shown in figure 6. The corresponding non-degeneracy conditions are again D # 0, M # 0

and D/M # cwherec = 4,3, ¢, 2 0.70,¢, ~ 0.74,3, %, 1. The regions in the (D, M )-plane where

" these conditions are satisfied are enumerated according to I+, IT+,...,IX+ with the same

meaning of the signs ‘+’ and ‘—’ as in the case 4 > "0, i.e. reflection of the v-axis and conversion

of the stability assignments maps complementary stability diagrams onto each other. Recall

from §5 that the SW-solutions are now distinguished according to oscillations about r = 0
(SW,) and oscillations about the non-trivial steady state (SWy).

Ficure 5. Bifurcation diagrams corresponding to the regions marked in figure 3.

21 Vol. 322. A


http://rsta.royalsocietypublishing.org/

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) N

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

268 G.DANGELMAYR AND E. KNOBLOCH
D
A D/M=1

VIII— - IX-

Ficure 6. Division of (D, M)-plane for 4 < 0.

In addition to L,, and Ly, which have the same meaning as for 4 > 0, the following
secondary bifurcations occur for 4 < 0

Ly,: SW, branches off SS,

SLg: SW, and SW, undergo a global bifurcation and join smoothly to each other,
Lg;(j =2, 3): secondary bifurcation of MW from SW,,

SNg,: saddle node for the SW,-branch.

The presence of a saddle node implies that two different SW,-solutions exist between SN,
and SLg. Both are created along SN,, but one of them joins the SW,-branch along SLg whereas
the other one undergoes a primary bifurcation at H,,.

In figure 7 the stability diagrams corresponding to the regions marked in figure 6 are shown.
The existence domain of the SW-solutions is characterized by a curve that runs from H; to
SNg and returns from there to L,, after crossing SLg. The two types SW, and SW, are
distinguished by the full and broken parts of the curve, respectively.

On the lines in the (D, M)-plane shown in figure 6, the following degeneracies occur for
M2 0. :

(i) M =0,D <0: the lines Ly, Lg,, SLg, Lg,, SN, coalesce with the positive p-axis. All
of them as well as the MW-branch exist in region IX —, but the two secondary bifurcation
lines Lg,, Lg, disappear in region I+, together with MW.

(ii) D = 0; theline L, passes from the region x > 0,v > 0 (I +) into the regiong > 0,v < 0
(IT+4). This transition is combined with a reflection of the existence domain of TW, but does
not produce a MW-branch.

(iii) D/M =1: When passing from II+ to III+, the line H, throws off both the Hopf
bifurcation Ly, and the L-instability Lg,, thereby creating the MW-branch.

(iv) D/M =1: Ly and Lg, coalesce with the left part of H,. In region III+, Ly lies above
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Lg, and MW has the assignment (+ +). In region IV +, the relative position of L and Lg,
is inverted resulting in the new assignment (+ —) for MW.

v) D/M = ¢, = 0.70: Ly, and Lg, cross each other. The number ¢, is given by ¢, = R, (k)
where k satisfies (k2—£'2)/(P(k) — k%) = 2R, (k), or

(1—8k2) (1—£?)
1— 16K+ 16K °

(k) =

which has a unique solution in 0 < k < 1, given by £ ~ 0.71.

(vi) D/M =¢, ~0.74; L, and SN, cross each other. The number ¢, is given by
¢y = 2(D(k)—k?)/(K2—FK?), whcre k satisfies (k*—k'%) Ry(k) = 5(k'2—D(k)), with solution
k* ~ 0.93 (see §5 2 (a)).

(vii) D/M =3: L, and Ly cross each other '

(viii) D/M = * : The three lines L,,, SLg and Lg, cross each other. (Equating the slopes of
L,, and SLg and the slopes of L,, and Lg, shows that both events happen simultaneously.)

(ix) D/M=1:L,, Ly, Ly and Lg, coalesce. Ly exists in region VIII4 and is replaced
by Lg, in region IX + as the second line from which MW branches off.

IfD=0,M=0,D/M=1 D/M=2%or D/M =1, our normal form degenerates into a
bifurcation of co-dimension threc, and hlgher-order terms must be taken into account. The
values ¢,, ¢,, 3, § for D/ M give rise to events rather than to true degeneracies. : 4

In figure 8 the stability diagrams of figure 7 are displayed in terms of bifurcation diagrams.
For the regions I+ to IX+ and I— we have chosen two straight paths (a), () through the
(#, v)-plane that both start in the region {# < 0, v < 0}. The path (a) hits first L, at some » < 0
and then all bifurcation lines in {# > 0}. The path (5) is obtained from path (a) by a parallel
displacement such that the intersection with L, is at some » > 0. For the stability diagrams
IT— to IX— we have chosen one straight path that starts in {# < 0, v < 0} and hits first H,
and then all other bifurcation lines, i.e. the intersection with L occurs at some v > 0. A parallel
displacement of this path results in a trivial bifurcation diagram, i.e. only the steady-state
bifurcation survives.

8. DISCUSSION AND CONCLUSION

We have described in some detail the bifurcation behaviour near a singularity of co-dimension
two of the Takens—Bogdanov type in the presence of O(2)-symmetry. Our analysis is confined
to the generic case in which the essential bifurcation behaviour is determined, after scaling,
by the third-order terms, and is valid when a variety of non-degeneracy conditions on the
coefficients of the three nonlinear terms are satisfied. Our analysis of the problem is essentlally
complete. We are able to identify the three primary branches of solutions that bifurcate from
the trivial state, i.e. the steady state, and the travelling and standing waves that bifurcate
simultaneously. We describe their stability properties and identify a number of secondary
bifurcations, of which some describe the termination on the SS-branch of the TW-branch (a
pitchfork bifurcation) and the SW-branch (a saddle-loop bifurcation when 4 > 0, or a Hopf
bifurcation when 4 < 0), whereas the remaining ones result in the appearance of a new
secondary branch of solutions, the modulated waves (MW), that connects the SW-branches
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FIGURE 7. Stability diagrams corresponding to the regions marked in figure 6.
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e
= Q) and TW-branches. Our analysis of the stability properties of the MW-branch did not lead to
E @) a sufficient condition for the existence of a tertiary bifurcation giving rise to the appearance

v

of a three-torus in the original variables. We have not, however, excluded the possibility of
an even number of three-tori for certain values of the parameters D, M.

Certain aspects of our results have a close relation with existing results. Thus near the Hopf
bifurcation along the line H; our analysis reproduces the results of Golubitsky & Stewart
(1985) and others concerning the stability of the SW-branches and TW-branches near a
non-degenerate Hopf bifurcation with O(2)-symmetry. The branch of standing waves is the
same as in the analogous problem with Z(2)-symmetry that has already been observed by
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Ficure 8. Bifurcation diagrams corresponding to the regions marked in figure 6.

Guckenheimer (1986), although in the O(2) problem the presence of the additional ‘angular
momentum’ eigenvalue changes its stability properties. This is, of course, because the standing
waves respect the Z(2)-symmetry. We also note the well-known results that the branch of steady
states remains unchanged in all essential aspects when the O(2)-symmetry is added. This is
in contrast with the Hopf bifurcation where the symmetry introduces a second solution branch
(the travelling waves).

Throughout the paper we have made full use of a natural formulation of the problem as
a classical central force problem, which has enabled us to.give a simple and intuitive
characterization of the various solution branches in terms of the possible motions in simple
potentials. We hope that the reader will find this identification helpful in understanding the
variety of bifurcation phenomena summarized in the bifurcation diagrams of §7.
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274 G. DANGELMAYR AND E. KNOBLOCH

- The symmetry described by the group O(2) arises naturally in a variety of systems. The
symmetry may appear explicitly as in physical systems with circular and reflectional symmetry,
or it may be induced by periodic boundary conditions on a line when there is no distinction
between the two directions (Knobloch 1986). Consequently, bifurcation problems with
O(2)-symmetry play an important role in a variety of physical applications. We conclude this
paper with a brief discussion of one such application. The system we consider is double-diffusive
convection. Here a layer of fluid containing an imposed stabilizing gradient of a solute such
assalt is heated from below. Under certain conditions, the initial instability from the no-motion
(conduction) solution as the thermal Rayleigh number (i.e. the heating) is increased will be
a Hopf bifurcation, and will precede a direct bifurcation to steady overturning convection.
When the lateral boundaries are of the no horizontal flux type, the resulting system has
Z(2)-symmetry, and the transition from oscillatory convection (i.e. standing waves) to
overturning convection (i.e. steady state) can be elucidated by unfolding the Takens—Bogdanov
bifurcation with Z(2)-symmetry, i.e. by choosing a second parameter (here the solutal Rayleigh
number) so that the Hopf bifurcation just precedes the direct bifurcation (Knobloch & Proctor
1981). However, with periodic boundary conditions, travelling waves rather than standing waves
are found in numerical simulations (Knobloch et al. 1986). To understand the interaction
between the travelling waves and the steady states one must study the Takens-Bogdanov
bifurcation with O(2)-symmetry. Our analysis shows that the TW-branch terminates on the
SS-branch in a pitchfork bifurcation. Thus the phase velocity of the wave tends to zero linearly
as the bifurcation is approached, and the wave slows down and comes to rest at the bifurcation,
turning into a steady-state solution. It is expected that this behaviour should be observed in
both the numerical simulations and the experiments. From the present analysis we also predict
explicitly the parameter regions in which more complicated behaviour such as modulated waves
could be observed. These issues are pursued elsewhere (Dangelmayr & Knobloch 1986).

This work was supported by Stiftung Volkswagenwerk. E.K. would like to thank Professor
W. Giittinger for his kind invitation and generous hospitality in Tiibingen, where most of this
work was done. The results were presented at the 1985 AMS conference on multiparameter
bifurcation theory, in Arcata, California. :
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O APPENDIX A. FORMAL DERIVATION OF THE AVERAGED EQUATIONS

E 8 In this Appendix we give a formal derivation of the averaged equations (4.3) with (4.4) as

leading terms of a perturbation analysis. The first step is to introduce a change of coordinates
(r,¥,L)— (0, I, L) with action-angle variables (I, @),

PHILOSOPHICAL
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OF

N Y ndy Lo ' ‘
‘I—2n§r (r,E, L?)dr, » : o (A la)
: 2 o ‘ . ’
@=QS_(T’6§’£")’ S(r, 1, 1) = f 7 (7, E(I, L?), L?) d. (A 1b)
Ty '

Here, 7' (r, E, L?) is given by (4.2), and the integrations are carried out along a closed trajectory
of the unperturbed system, € = 0, and 7, is a fixed reference coordinate on it. Of course, the
relation E(I, L?) occurring in S is obtained by solving I = I(E, L?) for E. In the new variables
(0,1,L) we get the followmg system :

o = W(I, Lz) +0(e), W =0K/0l, | (A 2a)
I' = eF(0,1,L%) + 0(€?), ‘ B (A 2b)
| L' =elG(0O, 1, L) + 0(e?), ‘ ‘ (A 2¢)
<@ ,
i u where K(I,L?) is the new hamiltonian of the unperturbed system that depends only on the
S P action variables, and |
O H
= +_ds 2 2 1 1 2 2
=0 F= i VPO (Mr*+v) 7 (r,E, L?) + P (Dr2+4v) L%} ds, (A 3a)
O ) ~ |
=w G = Dr*+v, ‘ (A 3b)

with E = E(I,L?) and r = r(0, E(I, L?), L?) being inserted according to the transformation
(A 1). Expanding the functions F, G in Fourier series,

(F,6)= 3 ({13, G, (L, 13) e, (A4)

n=—oo
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carrying out in (A 2) the transformation

(L) = (LL) 15 S = (Gall, L), Fy(L %) 59, (A5)

n#0

and dropping the tilde, we obtain

@’ = W(I,L[?)+0(e), (A 6a)
T = eE(I, L) + 0(e), (A 6b)
L’ = eLG,(I, L?) + O(e?), ‘ (A 6¢)

i.e. a decoupled system for (/, L). It is easy to rewrite the integration over @ involved in the
definitions of K, G, as an integration over r or s = r%, respectively. Pursuing this we obtain the
following representations for F, and G,:

nFy = Jo f(E, L) — L*(v+DJ,/J5) J_y, | (A7a)
Gy =¢(E, LY, (A7b)

with fand g given by (3.4) and E = E(/, L?) being inserted through (A 1). Note that £ involves
two integrations as seen from (A 34). If we now formally make the transformation (/, L) > (E, L)
via (A 1a), we obtain exactly the averaged equation (4.6). Note further that the second term
in (A 7a) vanishes if L’ =0, i.e. the steady states of (A 6b,¢) and those of (4.6) are in
1-1-correspondence as they should be.

ArprEnDIX B. THE FUNCTIONS Ry(£), Q(f)

In this Appendix we present the results of asymptotic and numerical calculations concerning
the functions R;(k) (1 <j < 6) and Q(k) that enter the persistence conditions and the variety
of subordinate bifurcations. The asymptotic behaviour of these functions near £k = 0 and £ = 1
is summarized in table 1. Numerical plots are shown in figure 9. The latter were obtained by
using the graphical capabilities of the computer algebra system SMP. The monotonicity
statements given in the text rely upon these numerical computations and the asymptotics rather
than upon analytical proofs.

TABLE 1. ASYMPTOTIC BEHAVIOUR OF R;(k) (1 <j < 6) anp Q(£)

R, (k) , Ry(k) Ry(K) Ry(k)
equation... (5.5) (5.9) (5.14) (5.16)
k—>0+ 8K2 -+ O (k) 31—+ O(RY) 5K+ O (k) 1+ + Ok
k>1— 1—3(K*/D) + O(k*4) J1+D)+0(@?)  —2+43(k2/D)+O0(k?) 16-1+0(1)
Ry(k) » Ry(k) Q(k)
equation... (5.22) (5.25) (6.4)
E>0+ §— &k + O(K) 1+4k+O(k) &—ghok +O(K%)

E>1—  242(K%/®)+0(k?) 1971+ 0(1) 10+ 0(?)
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Figure 9. Plots of the functions R,(k) (1 <j < 6) and Q(k).

AprPENDIX C. STABILITY OF THE BRANCH OF MODULATED WAVES NEAR THE
SADDLE-LOOP BIFURCATION FOR A >0

The MW-branch is specified by the zeroes of the equations
SEL) =0, gELY=0, | (1)
where E=E@R,p), L[*=L¥k,p), | (C2)

and k%, p are the two moduli introduced in (4.7) and (4.9). To determine the stability of a
solution of (C 1), we have to analyse (4.13), i.e. the eigenvalues of the 2 X 2 matrix

_|[/f=  2Lf1

22-2
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Because A has to be evaluated along the solution of (C 1) that is given parametrically in terms
of k and p(k) by (6.2)—(6.4), we express the entries of (C 3) also in terms of (£, p). We note that
QR ok o
0E ~ 0p’> oL 9p’
Qo A o O
0E ~  0k®’ TOLT Ok

(C4)

where d is the determinant
aE 0L OFE 6L2

Thus, .
0g OF OF 0g

= 2 g =_ 2 — e ——
dir A = d(fg+2L%,s) ” +2L (apak2 = akz)’ (C 6)

o % ag)
= 2 9 — 2) — 2= .5 v .2 .
ddetd = 2L%d(fpg12— g f12) = 2L (akz 3p 0op okt (C7)

The partial derivatives (C 4) are computed by using the representation (4.10), whereas the
derivatives of f, g follow from (4.4)—(4.7).

We wish to calculate (C 6) and (C 7) near the saddle-loop end of the MW-branch for 4 > 0.
To do this, we use the persistence conditions (6.2a), (6.3) and (6.4), and consider the limit
k—->1—. We first compute the determinant (C 5)

4ﬂ5ﬁ4k/2

= W'l' O(k'%), (C8)

where p = 5D /(M —5D) is the p-value of MW at the saddle loop ((6.24) and (6.9)). Next,
we obtain for £ —>1—,

% 2uD(1-30)

%= dp+ze 0@ | (C9a)

¢ __24Dp s

ok~ A3 12p) S TP HPHUHO(P), | (C 90)
_ai— __%Ep__ ’ ’ 26/

k2 A2(3+2“)3{2(1 +P) @ +p(1 +2P) P’} + 0(P°P'), (C9¢)
o 24D

= At 2p) (1P —P(1+2p) ®}+0(P?), (C 94d)

where @ = d®/dk?. Because @’ >—o0 as k—1—, we find that, at leading order,

o g of g _ 8D , -
HRedp pok - BEtep T TP,

. 22(1+ﬁ)2¢q§’ o /12
and hence detd = 3+2Z)'(A) 5 7 + O (DD’ [F'?). (C 10)
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Because det A > 0, there are either two stable or two unstable eigenvalues near the saddle loop.
To determine which case arises we must compute the trace. This is a delicate calculation. The
leading terms are those proportional to @’. Thus

16u°p%(1+p) @’{ aM
A4 (3+2p)"

dtrd = 1z MP 24+1vA4(34+2p)2— 2,uD(l+p)}+ (C11)

We next evaluate the expression (6.2a) in the limit £—1—

5D 3M—5D 12 M
= — 1 —_—————
P M—5D{1 M—sD 2735 M—5D+"'}’ (C12)
and similarly for the persistence condition (6.3)
2Dy "
Av = SA— 5D{M—2D¢+...}. (G 13)

Here the first ... in (C 12) represents all powers of @, which are all larger than the term £'2/®
as k—>1—. No term £'?/® occurs in (C 13). It is very easy to show that the trace vanishes
identically if only the terms of order @'®", n=0,1,2,... are kept. Hence the leading term
involving @’ in the right-hand side of (C 11) is of order @k'2/®, which tends to zero as k—1—.
Consequently we need the constant term in the asymptotic expansion of d tr 4. To obtain this
it is more convenient to work with the representations (4.6) and (4.454). With g = 0, we obtain

_ dMp _ ﬁ}
4= af - TEL+8M—5D) 3

J 4M oL 0 (J oLz o (J
1 1,4 2 2 = {2
o rmr— el m (F) g5, (7)) ©19

It is easy to see that the desired constant term in dfy; that contributes to d tr 4 is given by

aM P\ (OL? 0s, OL? %) B _32Mﬂ6/—,4(1+ﬁ)'
15 ( k= A)(ap ok O op) 154%(3+2p) +o (C 15)

Similarly we get

OE 0 (J,\ OF 0 (J,
d5r= PG (70) 55 3 (7)) (€16
and the relevant term of 2L%g;: contributing to d tr A has the form
OFE 0s;, OF 0s 16Du®p*(1+p)?
ep(=—= 1~ 1)
L D(ak2 % akz) A3+ T (C17)

Adding the right-hand side of (C 15) and (C 17) and dividing the result by d yields for the
leading term of the trace

trd =—&Mpy (1 :”)k'-u O(D/k2). (C 18)

Because # < 0, we conclude that sgn tr4 = sgn M; hence the stability assignment of the
MW-branch near the saddle-loop end is (sgn M, sgn M ). Moreover, the asymptotic behaviour
of tr A and det 4 implies that both eigenvalues are real and one is of order 1/£2, whereas the
other is of order @3/k".
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